DG (Deep Cycle GEL, 12 Volts) series is pure GEL battery with 12 years floating design life, it is ideal for standby or frequent cyclic discharge applications under extreme environments. By using strong grids, high purity lead and patented Gel electrolyte, the DG series offers excellent recovery after deep discharge under frequent cyclic discharge use, and can deliver 400 cycles at 100% DOD. Suitable for solar, CATV, marine, RV and deep discharge UPS, communication, and telecommunication, etc.

Specification

 and deep discharge UP| Cells Per Unit | 6 |
| :--- | :--- |
| Voltage Per Unit | 12 |
| Capacity | 55 Ah@20hr-rate to 1.75 V per cell @ $25^{\circ} \mathrm{C}$ |
| Weight | Approx. 17.0 Kg (Tolerance $\pm 3 \%)$ |
| Max. Discharge Current | $550 \mathrm{~A}(5 \mathrm{sec})$ |
| Internal Resistance | Approx. $8.6 \mathrm{~m} \Omega$ |
| Operating Temperature Range | Discharge: $-40^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
 Charge:- $20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
 Storage: $-40^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$ |
| Normal Operating Temperature Range | $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ |
| Float charging Voltage | 13.6 to $13.8 \mathrm{VDC} /$ unit Average at $25^{\circ} \mathrm{C}$ |
| Recommended Maximum Charging | 11 A |
| Current | 14.2 to $14.4 \mathrm{VDC} / \mathrm{unit}$ Average at $25^{\circ} \mathrm{C}$ |
| Equalization and Cycle Service | RITAR Valve Regulated Lead Acid (VRLA) batteries can be stored
 for more than 6 months at $25^{\circ} \mathrm{C}$. Self-discharge ratio less than 3%
 per month at $25^{\circ} \mathrm{C}$. Please charge batteries before using. |
| Self Discharge | Terminal F11/F15 |
| Terminal | A.B.S. UL94-HB, UL94-V0 Optional. |
| Container Material | |

RITAR

Dimensions

Constant Current Discharge Characteristics: A ($\left.\mathbf{2 5}^{\circ} \mathrm{C}\right)$ (The capacity reaches the peak value after 5-20 cycles.)

F.V/Time	5 MIN	10 MIN	15 MIN	30 MIN	1 HR	2 HR	3 HR	4 HR	5 HR	8 HR	10 HR	20 HR
9.60 V	136.9	101.9	79.77	52.46	32.07	19.31	13.97	11.15	9.466	6.411	5.323	2.918
10.0 V	132.9	97.00	78.14	51.59	31.92	19.16	13.91	11.10	9.410	6.359	5.272	2.865
10.2 V	129.0	93.58	76.91	51.43	31.62	19.02	13.81	11.05	9.354	6.307	5.220	2.812
10.5 V	117.2	87.37	74.09	51.15	31.33	18.87	13.75	10.94	9.243	6.255	5.169	2.750
10.8 V	107.0	80.61	69.09	50.88	30.26	18.53	13.38	10.68	9.016	6.006	5.005	2.611
11.1 V	92.41	72.88	62.68	48.07	28.75	17.71	12.79	10.17	8.629	5.751	4.857	2.458

Constant Power Discharge Characteristics: W $\left(25^{\circ} \mathrm{C}\right)($ The capacity reaches the peak value after 5-20 cycles.)

F.V/Time	5 MIN	10 MIN	15 MIN	30 MIN	1 HR	2 HR	3 HR	4 HR	5 HR	8 HR	10 HR	20 HR
9.60 V	1444	1086	869.7	588.6	370.5	227.5	166.6	132.9	112.9	76.55	63.61	34.98
10.0 V	1416	1052	855.7	588.1	369.7	226.3	166.3	132.7	112.6	76.18	63.21	34.38
10.2 V	1399	1025	846.1	586.7	366.8	225.0	165.5	132.4	112.3	75.69	62.65	33.74
10.5 V	1289	965.5	816.5	584.0	363.5	223.3	164.9	131.2	110.9	75.06	62.03	33.00
10.8 V	1188	900.4	763.5	581.5	353.0	220.5	160.4	128.2	108.2	72.07	60.06	31.34
11.1 V	1055	823.6	695.1	552.7	337.9	212.3	153.5	122.0	103.6	69.01	58.28	29.49

All mentioned values are average values (Tolerance $\pm 2 \%$).

Life characteristics of cyclic use

Discharge characteristic curve

Capacity Factors With Different Temperature

Battery Type		$-20^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$
GEL Battery	$6 \mathrm{~V} \& 12 \mathrm{~V}$	50\%	70\%	83\%	85\%	90\%	98\%	100\%	102\%	104\%	105\%
	2V	60\%	75\%	85\%	88\%	92\%	99\%	100\%	103\%	105\%	106\%
AGM Battery	$6 \mathrm{~V} \& 12 \mathrm{~V}$	46\%	66\%	76\%	83\%	90\%	98\%	100\%	103\%	107\%	109\%
	2 V	55\%	70\%	80\%	85\%	92\%	99\%	100\%	104\%	108\%	110\%

Discharge Current VS. Discharge Voltage

Final Discharge Voltage V /cell	1.75 V	1.70 V	1.60 V
Discharge Current (A)	$(A) \leqslant 0.2 \mathrm{C}$	$0.2 \mathrm{C}<(\mathrm{A})<1.0 \mathrm{C}$	$(\mathrm{A}) \geqslant 1.0 \mathrm{C}$

Charge the batteries at least once every six months, if they are stored at $25^{\circ} \mathrm{C}$.

Charging Method:

Constant Voltage	$-0.2 \mathrm{C} \times 2 \mathrm{~h}+14.4-14.7 \mathrm{~V} \times 24 \mathrm{~h}$, Max. Current 0.2 C
Constant Current	$-0.2 \mathrm{C} \times 2 \mathrm{~h}+0.1 \mathrm{C} \times 12 \mathrm{~h}$
Fast	$-0.2 \mathrm{C} \times 2 \mathrm{~h}+0.2 \mathrm{C} \times 6 \mathrm{~h}$

Bolt	M5	M6	M8
Terminal	F3 F4 F13 F18 T25 T26	F8 F11 F12-1 F15	F5 F9 F10 F12 F14 F16
Torque	6~7N-m	8~10N-m	10~12N-m

Maintenance \& Cautions

Cycle service
※ Avoid battery over discharge, especially battery sereis connection use.
※ Charged with recommend voltage, ensure battery can be full recharged.
In general, recharge capacity should be 1.1-1.15 times discharge capacity.
※ Effect of temperature on cycle charge voltage: -4mV/${ }^{\circ}$ /Cell.
※ There are a number of factors that will affect the length of cyclic service.
The most significant are depth of discharge, ambient temperature,
discharge rate, and the manner in which the battery is recharged.
Generally specking, the most important factors is depth of discharge.

